ეროვნული სახელმწიფო.
საკავშირო მუზეუმები. აღწერილობები

ARHEOLOGIA, ETNOLOGIA,
FOLKLORISTIKA KAVKAZA

0800 2007 TBILISI
НАЦИОНАЛЬНАЯ АКАДЕМИЯ НАУК ГРУЗИИ
КОМИССИЯ ПО НАУЧНОМУ СОТРУДНИЧЕСТВУ СО СТРАНАМИ КАВКАЗА
АРХЕОЛОГИЧЕСКАЯ КОМИССИЯ ГРУЗИИ
ЭТНОЛОГИЧЕСКАЯ КОМИССИЯ ГРУЗИИ
ЦЕНТР АРХЕОЛОГИЧЕСКИХ ИССЛЕДОВАНИЙ ОТАРА ЛОРТКИПАНИДЗЕ НАЦИОНАЛЬНОГО МУЗЕЯ ГРУЗИИ
ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ДЖОТА РУСТАВЕЛИ
ИНСТИТУТ НИКО БЕРДЗЕНИШВИЛИ
МУЗЕЙ ИСТОРИИ ЕВРЕЕВ ГРУЗИИ ДАВИДА БААЗОВА
ОБЩЕСТВО АССИРОЛОГОВ, БИБЛИОЛОГОВ И КАВКАЗОВЕДОВ

„არქეოლოგია, ეთნოლოგია, ფოლკლორისტიკა ქავშიღო“
(შეიქმნა 2006 წლში 7-8 სექტემბერში)

МЕЖДУНАРОДНАЯ НАУЧНАЯ КОНФЕРЕНЦИЯ
„АРХЕОЛОГИЯ, ЭТНОЛОГИЯ, ФОЛЬKLЮРИСТИКА КАВКАЗА“
(БАТУМИ, 7-8 СЕНТЯБРЯ 2006 Г.)

СБОРНИК КРАТКИХ СОДЕРЖАНИЙ ДОКЛАДОВ

2007 ТБИЛИСИ
POTS CONTENTS AT NERKIN-NAVER TOMB 4
(Republic of Armenia)

Middle Bronze Age tomb 4 (25-23 centuries B.C.) of Nerkin-Naver site is situated in Aragatsotn region of Armenia (Simonyan, unpubl.). Former contents of the pots found in the tomb are recovered.

Plant and animal remains have been separated from soil filling of pots by flotation and wet-sieving. Preservation level of recovered remains is very poor, which is probably caused by high biochemical activity of calcareous soils of region.

Table 1. Plant and animal remains uncovered from pots (Nerkin-Naver tomb 4).

<table>
<thead>
<tr>
<th>Pot No</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>Lower layers</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Finds</td>
<td></td>
</tr>
<tr>
<td>Nutlets of Lithospermum arvense</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>5</td>
<td>11</td>
<td>5</td>
<td>55</td>
<td>26</td>
<td>4</td>
<td>-</td>
<td>106</td>
</tr>
<tr>
<td>L. (=Buglossoides arvensis (L.))</td>
<td></td>
</tr>
<tr>
<td>Ioann. (Boraginaceae)</td>
<td></td>
</tr>
<tr>
<td>Nutlets of Boraginaceae gen. sp.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>Nutlets of Celtis sp. (Ulmaceae)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Grain fragments</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Rest of porridge (?)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ash fragments</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Eggshell fragments</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Crayfish/crab shell fragments</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Terrestrial snails’ shell fragments</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td>+</td>
</tr>
</tbody>
</table>

Nutlets of Lithospermum, unidentified Boraginaceae grass and Celtis as well eggshell, crayfish/crab fragments and snail shells are mineralized, grain remains and wood pieces are charred (Table 1, Fig. 1-2).

Lithospermum arvense (Boraginaceae) have a large ecology and are wide spread, it is a segetal weed (usually infests cereals; Mkrtchyan, 2003). In Armenia Lithospermum was found in almost all archaeological sites where botanical remains are known and it almost everytime accompanies cereal grains (since Neolithic period; Hovsepyan, 2006). So, the presence of Lithospermum nutlets (Table 1, Fig. 2) could be an indirect evidence of cereal grain component inside the above mentioned pots. This supposition is supported also by the
presence of poor preserved fragments of cereal grain inside two pots (15-6; Table 1).

According to the obtained data, the former contents of pots have been represented by grains or by some meals cooked with grain (except pots 11-3 where nothing were found inside). Pots 15 and 16 also contained crayfish/crab and pot 17 – egg (~3.5 cm length). The content of pot 17 was boiled till amorphous mass, which have specific shape of preservation (carbonized).

The presence of ash fragments, shells of snails and nutlet of Celtis inside some of the pots (4, 5, 7, 9) probably is accidental; those remains appear inside pots with soil around of pots.

In Armenia Celtis («қәәдәән») grows at lower and middle mountainous zones – on dry slopes, canyons, inside shrubs, etc. as the main component of rare xerophile broad-leaved forests (Takhtajyan, Fedorov, 1972). Finds of Celtis nutlets (mineralized endocarps; Table 1, Fig. 1) could be evidence of xerophile woody vegetation in the vicinity of the tomb in the past. The fruits (mesocarp) of Celtis are edible and have been used at territory of Armenia since prehistoric times (Paleolithic cave site Hovk-1 and Neolithic cave site Kmo-2, Neolithic settlement of Aknashen (Hovsepian, 2006), etc.). The wood of this not-tall tree is very strong and hard also could be used for preparation of tools.

The study of pot contents of the tombs will solve a series of problems of palaeoethnobiology and human diet in the past of our region and needs to be continued.

References:

